13. NGC 7049

13. NGC 7049

How was this unusual looking galaxy created? No one is sure, especially since it looks so strange. Spiral galaxy NGC 7049’s appearance is due to an unusually prominent dust ring seen mostly in silhouette. The ring is much darker than the din of millions of bright stars glowing behind it.

Higher Resolution

14. Eagle Nebula

14. Eagle Nebula

The Fairy of Eagle Nebula. The dust sculptures of the Eagle Nebula are evaporating. As powerful starlight whittles away these cool cosmic mountains, the statuesque pillars that remain might be imagined as mythical beasts. Pictured above is one of several striking dust pillars of the Eagle Nebula that might be described as a gigantic alien fairy. This fairy, however, is ten light years tall and spews radiation much hotter than common fire. The greater Eagle Nebula, M16, is actually a giant evaporating shell of gas and dust inside of which is a growing cavity filled with a spectacular stellar nursery currently forming an open cluster of stars. The above image in scientifically re-assigned colors was released in 2005 as part of the fifteenth anniversary celebration of the launch of the Hubble Space Telescope.

Higher Resolution

15. Colliding Galaxies

15. Colliding Galaxies

These two spiral galaxies, drawn together by gravity, started to interact a few hundred million years ago. The Antennae Galaxies are the nearest and youngest examples of a pair of colliding galaxies.

Higher Resolution

16. Telescopic Galaxies

16. Telescopic Galaxies

Gravity can bend light, allowing huge clusters of galaxies to act as telescopes. Almost all of the bright objects in this image are galaxies in the cluster known as Abell 2218. It’s so massive and compact that its gravity bends and focuses the light from galaxies that lie behind it.

Higher Resolution

17. Mark of Humanity

17. Mark of Humanity

17. Mark of Humanity 2

The extent of humanity’s mark on our Universe. The oft over-used quote seems particularly apt here: “Space is big. Really big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to space…” – Douglas Adams.

Higher Resolution

18. Black Widow Nebula

18. Black Widow Nebula

Black Widow Nebula hiding in the dust. In this Spitzer image, the two opposing bubbles are being formed in opposite directions by the powerful outflows from massive groups of forming stars. The baby stars can be seen as specks of yellow where the two bubbles overlap.

When individual stars form from molecular clouds of gas and dust they produce intense radiation and very strong particle winds. Both the radiation and the stellar winds blow the dust outward from the star creating a cavity or, bubble.

In the case of the Black Widow Nebula, astronomers suspect that a large cloud of gas and dust condensed to create multiple clusters of massive star formation. The combined winds from these groups of large stars probably blew out bubbles into the direction of least resistance, forming a double bubble.

The infrared image was captured by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) Legacy project. The Spitzer picture is a four-channel false-color composite, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red). Source

Higher Resolution


19. M87

19. M87

Streaming out from the center of the galaxy M87 like a cosmic searchlight is one of nature’s most amazing phenomena, a black-hole-powered jet of electrons and other sub-atomic particles traveling at nearly the speed of light. In this NASA Hubble Space Telescope image, the blue of the jet contrasts with the yellow glow from the combined light of billions of unseen stars and the yellow, point-like globular clusters that make up this galaxy.

At first glance, M87 (also known as NGC 4486) appears to be an ordinary giant elliptical galaxy; one of many ellipticals in the nearby Virgo cluster of galaxies. However, as early as 1918, astronomer H.D. Curtis noted a “curious straight ray” protruding from M87. In the 1950s when the field of radio was blossoming, one of the brightest radio sources in the sky, Virgo A, was discovered to be associated with M87 and its jet.

After decades of study, prompted by these discoveries, the source of this incredible amount of energy powering the jet has become clear. Lying at the center of M87 is a supermassive black hole, which has swallowed up a mass equivalent to 2 billion times the mass of our Sun. The jet originates in the disk of superheated gas swirling around this black hole and is propelled and concentrated by the intense, twisted magnetic fields trapped within this plasma. The light that we see (and the radio emission) is produced by electrons twisting along magnetic field lines in the jet, a process known as synchrotron radiation, which gives the jet its bluish tint.

M87 is one of the nearest and is the most well-studied extragalactic jet, but many others exist. Wherever a massive black hole is feeding on a particularly rich diet of disrupted stars, gas, and dust, the conditions are right for the formation of a jet. Interestingly, a similar phenomenon occurs around young stars, though at much smaller scales and energies.

At a distance of 50 million light-years, M87 is too distant for Hubble to discern individual stars. The dozens of star-like points swarming about M87 are, instead, themselves clusters of hundreds of thousands of stars each. An estimated 15,000 globular clusters formed very early in the history of this galaxy and are older than the second generation of stars, which huddle closer to the center of the galaxy.

Higher Resolution

20. Upgrading

20. Upgrading

Upgrading the International Space Station. New Zealand in the background, astronaut Robert L. Curbeam Jr. (left) and European Space Agency (ESA) astronaut Christer Fuglesang, both STS-116 mission specialists, participate in the mission’s first of three planned sessions of extravehicular activity (EVA) as construction continues on the International Space Station on December 12, 2006.

Higher Resolution

21. Eskimo Nebula

21. Eskimo Nebula

A Beautiful End to a Star’s Life — The “Eskimo Nebula.”

Stars like the Sun can become remarkably photogenic at the end of their life. A good example is NGC 2392, which is located about 4,200 light years from Earth. NGC 2392, nicknamed the “Eskimo Nebula”, is what astronomers call a planetary nebula. This designation, however, is deceiving because planetary nebulas actually have nothing to do with planets. The term is simply a historic relic since these objects looked like planetary disks to astronomers in earlier times looking through small optical telescopes.

Instead, planetary nebulas form when a star uses up all of the hydrogen in its core — an event our Sun will go through in about five billion years. When this happens, the star begins to cool and expand, increasing its radius by tens to hundreds of times its original size. Eventually, the outer layers of the star are carried away by a thick 50,000 kilometer per hour wind, leaving behind a hot core. This hot core has a surface temperature of about 50,000 degrees Celsius, and is ejecting its outer layers in a much faster wind traveling six million kilometers per hour. The radiation from the hot star and the interaction of its fast wind with the slower wind creates the complex and filamentary shell of a planetary nebula. Eventually the remnant star will collapse to form a white dwarf star.

Higher Resolution

22. Pluto’s Mountains

22. Pluto's Mountains

Pluto’s Majestic Mountains, Frozen Plains and Foggy Hazes.

Just 15 minutes after its closest approach to Pluto on July 14, 2015, NASA’s New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon. The smooth expanse of the informally named icy plain Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. To the right, east of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights over a dozen layers of haze in Pluto’s tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide.

Higher Resolution

23. Cosmic Christmas Tree

23. Cosmic Christmas Tree

NGC 1333 is seen in visible light as a reflection nebula, dominated by bluish hues characteristic of starlight reflected by dust. A mere 1,000 light-years distant toward the heroic constellation Perseus, it lies at the edge of a large, star-forming molecular cloud. This striking close-up view spans about two full moons on the sky or just over 15 light-years at the estimated distance of NGC 1333. It shows details of the dusty region along with hints of contrasting red emission from Herbig-Haro objects, jets and shocked glowing gas emanating from recently formed stars. In fact, NGC 1333 contains hundreds of stars less than a million years old, most still hidden from optical telescopes by the pervasive stardust. The chaotic environment may be similar to one in which our own Sun formed over 4.5 billion years ago.

24. The Witch’s Broom Nebula

24. The Witch's Broom Nebula

This sharp telescopic view is centered on a western segment of the Veil Nebula cataloged as NGC 6960 but less formally known as the Witch’s Broom Nebula. Blasted out in the cataclysmic explosion, the interstellar shock wave plows through space sweeping up and exciting interstellar material. Imaged with narrow band filters, the glowing filaments are like long ripples in a sheet seen almost edge on, remarkably well separated into atomic hydrogen (red) and oxygen (blue-green) gas. The complete supernova remnant lies about 1400 light-years away towards the constellation Cygnus. This Witch’s Broom actually spans about 35 light-years. The bright star in the frame is 52 Cygni, visible with the unaided eye from a dark location but unrelated to the ancient supernova remnant.

Higher Resolution

25. HTV-4

25. HTV-4

Japanese cargo ship HTV-4 returning to earth, picture taken from the ISS. As the spacecraft entered our atmosphere, it was moving at about eight kilometers per second (five miles per second). Its huge velocity and significant mass meant it rammed through the air, compressing the gas ahead of it violently. Compressed gas heats up, and so the air becomes hugely heated—literally glowing. In the end, the spacecraft’s energy of motion is converted into light and heat; the equivalent of the energy released by dozens of tons of TNT exploding, but slowly, over many seconds. The heat melts the spacecraft, and the fierce wind of re-entry blows this melted material away (in a process called ablation).

Higher Resolution

Categorized in:

Fact List, Our World, Science,

Last Update: April 25, 2016

Tagged in: